- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Lim, Sanghyun (2)
-
Lee, Johnny W. (1)
-
Liu, Peng (1)
-
Maienshein, Daniel N. (1)
-
Musaev, Djamaladdin G. (1)
-
Ngai, Ming-Yu (1)
-
Ngai, Ming‐Yu (1)
-
Zhao, Gaoyuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Allyl carboxylates are useful synthetic intermediates in a variety of organic transformations, including catalytic nucleophilic/electrophilic allylic substitution reactions and 1,2-difunctionalization reactions. However, the catalytic 1,3-difunctionalization of allyl carboxylates remains elusive. Herein, we report the first photoinduced, phosphine-catalyzed 1,3-carbobromination of allyl carboxylates, affording a range of valuable substituted isopropyl carboxylates (sIPC). The transformation has broad functional group tolerance, is amenable to the late-stage modification of complex molecules and gram-scale synthesis, and expands the reaction profiles of allyl carboxylates and phosphine catalysis. Preliminary experimental and computational studies suggest a non-chain-radical mechanism involving the formation of an electron donor–acceptor complex, 1,2-radical migration (RaM), and Br-atom transfer processes. We anticipate that the 1,2-RaM reactivity of allyl carboxylates and the phosphine-catalyzed radical reaction will both serve as a platform for the development of new transformations in organic synthesis.more » « less
-
Lee, Johnny W.; Lim, Sanghyun; Maienshein, Daniel N.; Liu, Peng; Ngai, Ming‐Yu (, Angewandte Chemie International Edition)Abstract Applications of TEMPO.catalysis for the development of redox‐neutral transformations are rare. Reported here is the first TEMPO.‐catalyzed, redox‐neutral C−H di‐ and trifluoromethoxylation of (hetero)arenes. The reaction exhibits a broad substrate scope, has high functional‐group tolerance, and can be employed for the late‐stage functionalization of complex druglike molecules. Kinetic measurements, isolation and resubjection of catalytic intermediates, UV/Vis studies, and DFT calculations support the proposed oxidative TEMPO./TEMPO+redox catalytic cycle. Mechanistic studies also suggest that Li2CO3plays an important role in preventing catalyst deactivation. These findings will provide new insights into the design and development of novel reactions through redox‐neutral TEMPO.catalysis.more » « less
An official website of the United States government
